Journal of Human Reproductive Science
Home Ahead of Print Current Issue Archives
   Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size    Users online: 744


 
ORIGINAL ARTICLE Table of Contents   
Year : 2020  |  Volume : 13  |  Issue : 2  |  Page : 138-144
In vitro Activation of mouse oocytes through intracellular Ca2+ regulation


1 Reproductive Science Master Program of Biomedical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
2 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, University of Indonesia; Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital; Human Reproductive, Infertility, and Family Planning Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
3 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, University of Indonesia; Human Reproductive, Infertility, and Family Planning Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
4 Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia

Correspondence Address:
Prof. Budi Wiweko
Indonesian Medical Education and Research Institutes (IMERI), Salemba Raya Street, No. 6, Jakarta
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jhrs.JHRS_122_19

Rights and Permissions

Background: Ca2+ signaling pathway is suggested to play an essential role in mediating oocyte maturation. Aims: The aim of this study was to evaluate intracellular Ca2+ of resistant immature oocytes that failed to resume meiosis following subsequent in vitro culture reach metaphase II after calcium ionophore A23187 activation. Settings and Design: This in vitro analytical experimental study was conducted at Animal Science Laboratory of Indonesian Medical Education and Research Institute (IMERI), Human Reproductive Infertility and Family Planning of IMERI, and Electrophysiology Imaging of Terpadu Laboratory, Faculty of Medicine, University of Indonesia. Methods: A total of 308 oocytes classed as resistant immature following in vitro culture were randomly allocated to control (n = 113) and treatment groups (n = 195). The oocyte activation group was exposed to A23187 solution for 15 min and then washed extensively. Maturation was evaluated by observing the first polar body extrusion 20‒24 h after A23187 exposure. Ca2+ imaging was conducted using a confocal laser scanning microscope to identify the dynamic of Ca2+ response. Statistical Analysis: SPSS 20, Chi-square, and Mann–Whitney U-test were used in this study. Results: Activation of resistant immature oocytes with A23187 significantly increased the number of oocyte maturation compared with the control group (P<0.001). Furthermore, fluorescent intensity measurements exhibited a significant increase in the germinal vesicle stage when activated (P = 0.005), as well as the metaphase I stage, even though differences were not significant (P = 0.146). Conclusion: Artificial activation of resistant immature oocyte using chemical A23187/calcimycin was adequate to initiate meiosis progress.


[FULL TEXT] [PDF]*
Print this article  Email this article
    

  Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
   Citation Manager
  Access Statistics
   Reader Comments
   Email Alert *
   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed112    
    Printed6    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal