Journal of Human Reproductive Science
Home Ahead of Print Current Issue Archives
   Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size    Users online: 1236


 
   Table of Contents     
CASE REPORT  
Year : 2018  |  Volume : 11  |  Issue : 1  |  Page : 79-81
 

Progesterone hypersensitivity: A challenge for luteal support


Department of Reproductive Medicine, Institute of Human Reproduction, Guwahati, Assam, India

Date of Web Publication27-Mar-2018

Correspondence Address:
Dr. Astha Gupta
Department of Reproductive Medicine, Institute of Human Reproduction, Bharalumukh, Guwahati, Assam
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jhrs.JHRS_116_17

Rights and Permissions

 

   Abstract 


Progesterone hypersensitivity is a rare phenomenon which can occur after both endogenous and exogenous exposures. We present a case of hypersensitivity to various forms and routes of exogenous progesterone. A 27-year-old female presented with primary infertility. Investigations revealed Grade 1 endometriosis and polycystic ovary syndrome. Three cycles of intrauterine insemination were attempted which were unsuccessful and in vitro fertilization was proceeded. Six blastocysts of Grade A were formed and cryopreserved. Artificial cycle was used for endometrial preparation for frozen embryo transfer (FET). However, due to failure to use exogenous progesterone due to hypersensitivity reaction, Modified Natural Cycle (MNC) was used. A follicle was formed using ovulation induction with tamoxifen and human menopausal gonadotropin. Ovulation was induced by human chorionic gonadotropin (hCG), and natural progesterone from corpus luteum was used. FET was done when endometrium was 8 mm. Pregnancy was confirmed by transvaginal ultrasound and β-hCG levels and continued uneventfully. Endogenous progesterone can be used as an alternative for endometrial preparation for FET in patients with exogenous progesterone hypersensitivity.


Keywords: Frozen embryo transfer, hypersensitivity, luteal-phase support, progesterone


How to cite this article:
Gupta A, Goenka D, Goenka ML. Progesterone hypersensitivity: A challenge for luteal support. J Hum Reprod Sci 2018;11:79-81

How to cite this URL:
Gupta A, Goenka D, Goenka ML. Progesterone hypersensitivity: A challenge for luteal support. J Hum Reprod Sci [serial online] 2018 [cited 2020 Sep 22];11:79-81. Available from: http://www.jhrsonline.org/text.asp?2018/11/1/79/228603





   Introduction Top


Luteal-phase support (LPS) is a routine procedure after embryo transfer in both fresh and frozen transfer in vitro fertilization (IVF) cycles. LPS is a term used for the administration of medications to support implantation and pregnancy, which mainly consist of human chorionic gonadotropin (hCG) and progesterone. As the use of hCG is associated with a high risk of ovarian hyperstimulation syndrome, progesterone is the agent of choice.[1] It is available in intramuscular, oral, vaginal, and subcutaneous forms. Progesterone hypersensitivity is a rare entity which is a challenge for infertility clinicians. We present a rare case of hypersensitivity to various routes and forms of exogenous progesterone.


   Case Report Top


A 27-year-old female, married for 2 years, presented with an inability to conceive for 1 year. She had spontaneous abortion at 6 weeks of gestation 1 year back. Her menstrual cycle length was of 1–3 months' duration with bleeding for 4–5 days. Medical and surgical histories were insignificant. Transvaginal ultrasound (TVS) showed polycystic ovary, and antral follicle count was 26. Hysterosalpingography showed bilateral patent tubes and karyotype of the couple was normal. The patient's husband's semen analysis was normal.

Hysterolaparoscopy showed Grade 1 endometriosis and bilateral positive chromopertubation. Three cycles of intrauterine insemination were performed which were unsuccessful and therefore a decision for IVF was taken. Stimulation was done for 12 days using antagonist protocol with injection human menopausal gonadotropin (hMG) 225 IU. Antagonist cetrorelix acetate 0.25 mg was added when leading follicle was 14 mm. Trigger was given by a gonadotropin agonist, triptorelin acetate 0.1 mg. Transvaginal oocyte retrieval was done 35 h after trigger. Six blastocysts of Grade A were formed and cryopreserved. In the next menstruation, endometrial preparation was started for frozen embryo transfer (FET) with oral estradiol valerate. Once endometrium was 8 mm, exogenous injectable natural micronized progesterone 100 mg was added (Hald; Intas). Two hours after injection, the patient developed burning and pain at the injection site associated with fever and breathlessness. She was managed with injectable hydrocortisone. Next day, aqueous progesterone 25 mg (Pregcert AQ; Koye) was given following which similar symptoms developed. Vaginal progesterone gel (Emprogest 8% w/w; Emcure) and 300 mg capsules (Hald; Intas) were tried. Vaginal blisters developed and similar symptoms reappeared. The cycle was cancelled due to failure to administer progesterone.

As there was no previous history of endogenous progesterone hypersensitivity, we decided to use Modified Natural Cycle (MNC).

In the next cycle, follicular growth was initiated by tamoxifen 40 mg for 5 days and 75 IU HMG daily. Follicular monitoring showed monofollicular development. As the follicle size reached 19 mm, endometrial thickness was found to be 8.2 mm. Ovulation was triggered with recombinant hCG 250 μg for natural progesterone secretion from corpus luteum. Progesterone measured 48 h after trigger was found to be 4.59 ng/ml. Ovulation was further confirmed by corpus luteum and homogenous endometrium on TVS. Embryo transfer was done after 7 days of trigger (5 days after ovulation). Progesterone level on the day of transfer was 20 ng/ml. Luteal support was given as recombinant hCG 250 μg starting on the day of ovulation and continued every 72 h. Ten days posttransfer, β-hCG was 174.37 mIU/ml and progesterone was 21.78 ng/ml. TVS done 17 days after transfer (5 weeks of gestation) showed a gestational sac of 3.5 mm and yolk sac of 1.1 mm, with β-hCG of 1733.44 IU/ml and progesterone level of 11.82 ng/ml. At 7 weeks, TVS confirmed a single intrauterine pregnancy with crown rump length of 5.5 mm corresponding to 6 weeks and 6 days and cardiac activity of 118 beats/min and progesterone level of 11 ng/ml. LPS was withdrawn at 10 weeks and pregnancy is now continuing uneventfully at 16 weeks.


   Discussion Top


The luteal phase is defined as the period from the time of ovulation till the occurrence of a pregnancy or the resumption of menses 2 weeks later. In the normal luteal phase, hormonal production peaks 4 days after ovulation and continues for 1 week until falling before the next menstruation. After ovulation, granulosa cells undergo luteinization under the influence of luteinizing hormone (LH) and the formed corpus luteum requires regular LH stimulation to maintain adequate production of progesterone.[2] If pregnancy occurs, corpus luteum is maintained by hCG.

In artificial cycle for endometrial preparation, exogenous estrogen is used which also prevents follicular growth. Thus, there is no corpus luteum, and exogenous progesterone supplementation is required to initiate and maintain the secretory endometrium and pregnancy. Several studies have shown an increase in live birth rate after luteal-phase supplementation of progesterone in FET.[3],[4] Therefore, progesterone supplementation is a necessity for FET cycles and the management of progesterone hypersensitivity is a challenge.

Progesterone hypersensitivity is a rare entity with variable presentation varying from dermatitis,[5],[6] dyspnea, cough, and anaphylaxis.[7] The first case was reported by Shelley et al. in 1964 as a dermatitis flare after premenstrual endogenous progesterone exposure.[8] Hypersensitivity reactions have been reported after exogenous as well as endogenous progesterone exposures.[9],[10] Hypersensitivity after endogenous progesterone exposure occurs during menstruation or pregnancy without additional exogenous hormone supplementation.

Hypersensitivity can occur after external progesterone exposure from natural source such as soy and yam as well as synthetic forms such as 21-carbon derivatives (medroxyprogesterone acetate, megestrol acetate, and nomegestrol) and 19-nortestosterone compounds (norethindrone, norethindrone acetate, and levonorgestrel). These patients do not have any previous history of symptoms during the luteal phase of cycle or pregnancy. Our patient belonged to this category as she did not have a history of any previous hypersensitivity reaction to endogenous exposure.

Progesterone supplementation was required for endometrial preparation for FET. However, due to failure in supplementing exogenous progesterone, MNC was used. Follicle was developed and ovulation was triggered by recombinant hCG. The normal range of progesterone after ovulation varies from 3 to 20 ng/ml.[11] In our patient, it was 4.59 ng/ml that confirmed ovulation which was further confirmed by homogeneous endometrium by TVS. Recombinant β-HCG was given every 72 h to maintain corpus luteum till 10 weeks. Corpus luteum was able to maintain normal progesterone level and pregnancy continued uneventfully.

Progesterone hypersensitivity is a dilemma for infertility clinicians. Anticipating such challenge and making alternative protocols to deal with it is the key to success. Management of our case thus gives a hope for many such patients in achieving uneventful pregnancy and delivery after IVF cycles.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support in assisted reproduction cycles. Hum Reprod Update 2012;18:473.  Back to cited text no. 1
    
2.
Vande Wiele RL, Bogumil J, Dyrenfurth I, Ferin M, Jewelewicz R, Warren M, et al. Mechanisms regulating the menstrual cycle in women. Recent Prog Horm Res 1970;26:63-103.  Back to cited text no. 2
[PUBMED]    
3.
Veleva Z, Orava M, Nuojua-Huttunen S, Tapanainen JS, Martikainen H. Factors affecting the outcome of frozen-thawed embryo transfer. Hum Reprod 2013;28:2425-31.  Back to cited text no. 3
[PUBMED]    
4.
Bjuresten K, Landgren BM, Hovatta O, Stavreus-Evers A. Luteal phase progesterone increases live birth rate after frozen embryo transfer. Fertil Steril 2011;95:534-7.  Back to cited text no. 4
    
5.
Maguire T. Autoimmune progesterone dermatitis. Dermatol Nurs 2009;21:190-2.  Back to cited text no. 5
    
6.
Lee MK, Lee WY, Yong SJ, Shin KC, Lee SN, Lee SJ, et al. A case of autoimmune progesterone dermatitis misdiagnosed as allergic contact dermatitis. Allergy Asthma Immunol Res 2011;3:141-4.  Back to cited text no. 6
    
7.
Bemanian MH, Gharagozlou M, Farashahi MH, Nabavi M, Shirkhoda Z. Autoimmune progesterone anaphylaxis. Iran J Allergy Asthma Immunol 2007;6:97-9.  Back to cited text no. 7
    
8.
Shelley WB, Preucel RW, Spoont SS. Autoimmune progesterone dermatitis. Cure by oophorectomy. JAMA 1964;190:35-8.  Back to cited text no. 8
    
9.
Farah FS, Shbaklu Z. Autoimmune progesterone urticaria. J Allergy Clin Immunol 1971;48:257-61.  Back to cited text no. 9
    
10.
Moody BR, Schatten S. Autoimmune progesterone dermatitis: Onset in a women without previous exogenous progesterone exposure. South Med J 1997;90:845-6.  Back to cited text no. 10
    
11.
Kratz A, Ferraro M, Sluss PM, Lewandrowski KB. Laboratory reference values. N Engl J Med 2004;351:1548-63.  Back to cited text no. 11
    




 

Top
Print this article  Email this article
             

    

 
   Search
 
  
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (454 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Case Report
   Discussion
    References

 Article Access Statistics
    Viewed2098    
    Printed40    
    Emailed0    
    PDF Downloaded113    
    Comments [Add]    

Recommend this journal